Deep learning semantic segmentation supported risk monitoring of tailings reservoir basin

نویسندگان

چکیده

å°¾çŸ¿åº“æ˜¯çŸ¿å±±ä¼ä¸šé€‰çŸ¿çš„å¿ è¦è®¾æ–½ï¼ŒåŒæ—¶å¯¹å‘¨å›´çŽ¯å¢ƒä¹Ÿæ˜¯ä¸€ä¸ªé‡å¤§çš„å±é™©æºã€‚ä¸ºç ”ç©¶æµåŸŸèŒƒå›´å† å°¾çŸ¿åº“çš„æºƒåè·¯å¾„ä»¥åŠå¯¹çŸ¿åŒºåœ°è¡¨é€ æˆçš„é£Žé™©ï¼Œä»¥èµ¤åŸŽåŽ¿ä¸ºä¾‹ï¼Œåˆ©ç”¨GF-1高分辨率遥感影像,基于遥感RS(Remote Sensing)及地理信息系统GIS(Geographic Information Systemï¼‰æ‰‹æ®µå¯¹å°¾çŸ¿åº“çš„æµåŸŸé£Žé™©è¿›è¡Œäº†ç›‘æµ‹åˆ†æžã€‚é¦–å ˆï¼Œé€šè¿‡åˆ†æžå°¾çŸ¿åº“åœ¨é¥æ„Ÿå½±åƒä¸Šçš„çº¹ç†ã€è‰²è°ƒã€å½¢çŠ¶ä»¥åŠå¤§å°ç­‰ç‰¹å¾ï¼Œåˆ¶ä½œäº†ç”¨äºŽç›®æ ‡æ£€æµ‹çš„å°¾çŸ¿åº“æ ·æœ¬é›†ï¼Œç„¶åŽï¼Œåœ¨åŽŸå§‹SSDç›®æ ‡æ£€æµ‹ç½‘ç»œåŸºç¡€ä¸Šæ·»åŠ äº†åå·ç§¯æ¨¡å—å’Œè¿žæŽ¥æ¨¡å—æž„å»ºå¤šå°ºåº¦èžåˆç›®æ ‡æ£€æµ‹ç®—æ³•MSF_SSDï¼Œåœ¨ç›®æ ‡æ£€æµ‹ç»“æžœåŸºç¡€ä¸Šä½¿ç”¨PSPnetç®—æ³•å®žçŽ°å°¾çŸ¿åº“ç»“æž„åˆ†å‰²ï¼Œå¾—åˆ°äº†å°¾çŸ¿åº“å† éƒ¨ç»“æž„â€”åä½“ä»¥åŠåº“åŒºï¼Œè¿ç”¨RS与GISæŠ€æœ¯å¯¹å°¾çŸ¿åº“çš„ä¸Šæ¸¸æ±‡æ°´é¢ä»¥åŠäº‹æ• å¯èƒ½å¾„æµè¿›è¡Œæå–ï¼Œè¿›è€ŒåŸºäºŽArc Hydroæ¨¡åž‹æ¨¡æ‹Ÿå°¾çŸ¿åº“çš„æºƒåè·¯å¾„ã€‚æœ€åŽï¼Œé€šè¿‡æž„å»ºæºƒåè·¯å¾„çš„ç¼“å†²åŒºï¼Œå¾—åˆ°å°¾çŸ¿åº“å‘ç”Ÿæºƒåæ‰€é€ æˆçš„åœ°ç‰©å½±å“èŒƒå›´åŠé¢ç§¯ã€‚ç ”ç©¶ç»“æžœè¡¨æ˜Žï¼šèµ¤åŸŽåŽ¿å°¾çŸ¿åº“çš„æºƒåè·¯å¾„æ€»ä½“æ˜¯ä»Žè¥¿å‘ä¸œï¼Œä»ŽåŒ—å‘å—ï¼Œå—æºƒåå½±å“çš„åœ°ç‰©æ€»é¢ç§¯è¾¾åˆ°480 km2ã€‚å ¶ä¸­ï¼Œæž—åœ°176.52 km2,耕地175.52 km2,城市建设用地43.74 km2,农村建设用地2.47 km2,水体17.72 km2,草地和牧场分别为3.60 km2、1.22 km2ã€‚ç ”ç©¶æˆæžœå¯ç”¨äºŽåˆ†æžå°¾çŸ¿åº“æºƒåé€ æˆçš„åœ°ç‰©æŸå¤±ä»¥åŠå½±å“èŒƒå›´é¢ç§¯ç­‰ä¿¡æ¯ï¼Œæå‡å°¾çŸ¿åº“çš„é£Žé™©ç®¡ç†æ°´å¹³åŠåº”æ€¥å“åº”èƒ½åŠ›ï¼Œä¸ºæœ‰å ³éƒ¨é—¨åˆ¶å®šå†³ç­–æä¾›ç†è®ºä¾æ®ã€‚

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantic Segmentation with Deep Learning

We present a deep convolutional neural network approach for producing semantic segmentations. First, we generalize the architecture of the successful Alexnet network [7] to directly predict coarse segmentations. Second, we produce full resolution segmentations by re-ranking a diverse set of plausible segmentation proposals generated from a recent state of the art approach [9].

متن کامل

Land use mapping in the Three Gorges Reservoir Area based on semantic segmentation deep learning method

The Three Gorges Dam, a massive cross-century project spans the Yangtze River by the town of Sandouping, located in Yichang, Hubei province, China, was built to provide great power, improve the River shipping, control floods in the upper reaches of the Yangtze River, and increase the dry season flow in the middle and lower reaches of the Yangtze River. Benefits are enormous and comprehensive. H...

متن کامل

Semantic Part Segmentation with Deep Learning

In this work we address the task of segmenting an object into its parts, or semantic part segmentation. We start by adapting a state-of-the-art semantic segmentation system to this task, and show that a combination of a fully-convolutional Deep CNN system coupled with Dense CRF labelling provides excellent results for a broad range of object categories. Still, this approach remains agnostic to ...

متن کامل

Semantic Instance Segmentation via Deep Metric Learning

We propose a new method for semantic instance segmentation, by first computing how likely two pixels are to belong to the same object, and then by grouping similar pixels together. Our similarity metric is based on a deep, fully convolutional embedding model. Our grouping method is based on selecting all points that are sufficiently similar to a set of “seed points’, chosen from a deep, fully c...

متن کامل

Deep learning based supervised semantic segmentation of Electron Cryo-Subtomograms

Cellular Electron Cryo-Tomography (CECT) is a powerful imaging technique for the 3D visualization of cellular structure and organization at submolecular resolution. It enables analyzing the native structures of macromolecular complexes and their spatial organization inside single cells. However, due to the high degree of structural complexity and practical imaging limitations, systematic macrom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2021

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20210223